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Project Overview

Objectives

• Demonstrate MONSID reasoner on ASTERIA XACT Attitude 

Control Subsystem (Blue Canyon Technologies)

• Model XACT and integrate with ASTERIA flight software

• Perform robustness and flight readiness tests

• Benchmark computing resource impacts

• Demonstrate on ASTERIA System Testbed (with captured 

data) and on board the spacecraft

• Include MONSID in demonstration of closed-loop autonomy

Goals

• Provide a trusted, reusable, model-based 

on-board diagnostic reasoning capability

• Detect failures and mission threats

• Estimate remaining capability in real time

• Enable on-board autonomy to respond to 

unknown events

The ASTERIA Spacecraft provided a unique opportunity 

to demonstrate on-board model-based diagnosis

supporting complete on-board autonomy

• Extended Mission Experiment:  Ability and willingness to host 
reasoning software as payload

• Capable spacecraft with complex subsystems and behavior 
(ACS chosen for study), able to gather full rate data

• Mature testbeds and test procedures

• Modular flight software architecture (F Prime)



MONSID (Model-based Off-Nominal State Identification and Detection) consists of:

❖Diagnostic Engine (application independent)

❖Model capturing nominal system behavior (application specific, network of hardware 
components)

▪ Sensor and Command data are inputs to MONSID Model 

❖Inputs are propagated through model, producing multiple estimates of state variables 

❖Diagnostic engine flags inconsistencies in state variable estimates

❖Utilizes Constraint Suspension technique to detect and isolate faults

▪ MONSID provides a synchronous report of healthy/failed system state

▪ Compact, modular API capable of operating on resource-limited platforms

MONSID Background



• Components:

‒ Associated with system state variables (vertices) and 
constraints that capture behavior

‒ Components are not entirely stateless, but may 
include some “memory” of previous state estimates

‒ Components have a notion of “input” (left) vs. “output” 
(right), roughly equivalent to functional flow

• Constraints:

‒ Constraints are equations that relate state variables 
to one another

‒ Forward constraints capture input to output behavior

‒ Reverse constraints (output to input) are also needed 
to verify model consistency

‒ No restrictions on constraint format

• “Sensors:”

‒ Provide state estimates to model from physical 
system (e.g., sensor values)

‒ Commanded and reported hardware data, FSW 
parameters

MONSID Model Description

Model Layout

Sensor

• Input and output nodes:

‒ Each holds two or more versions of a state variable 
estimate for consistency checks

‒ Faults are indicated when discrepancies exceed a 
tolerance threshold



• Starting assumptions:  Bounding the system under study (in this case, restricted to failures of XACT 
components)
❖ Identify relevant telemetry and control signals

❖ Break up model into components consistent with our desired level of diagnosability and data availability

❖ Associate signals with components – follow system state effects model, and introduce hidden state variables (viz., 
internally computed only) as needed

❖ Where necessary create “pseudocomponents” – components that model dynamic and environmental state, needed by 
other components.  These do not represent physical hardware.

❖ Model complexity trades:  1.  Minimizing connections leads to leaner models;  2.  Sensor placement determines 
diagnosability.

• Develop constraints from first principles and example data, one component at a time
❖ Develop both forward constraints (predictive) and reverse constraints (deductive)

❖ Constraints need not be symbolic inverses of each other – apply workarounds if reverse constraints cannot be 
calculated or do not exist

❖ Need to account for different spacecraft modes and hardware operational modes

❖ Verify that constraints are protected against bad data or numerical singularity / divide-by-zero conditions

❖ Check constraints against test data, one component at a time

❖ Begin with simple constraints, and add complexity as needed to increase fidelity

XACT Modeling Approach



• Prove that modeling a real subsystem 
(BCT XACT) is feasible, affordable, and 
effective

• Individual, reusable model components 
created and unit-tested first

• Components placed into system topology, 
as shown here

• Final model size:
❖ 99 input nodes (94 sensor / command 

inputs plus 5 hidden state variables)

❖ 36 output nodes

❖ 12 components:

▪ 3x Reaction Wheels

▪ 3x Tachometers

▪ 1 Magnetorquer block

▪ 1 Sun Sensor

▪ 1 IMU

▪ 1 Star Tracker

▪ 1 Sun Visibility Model (pseudocomponent)

▪ 1 Dynamics and Kinematics 
pseudocomponent

XACT Model Summary

Effectors Sensors



• After completion, tested 
model with captured data 
from ASTERIA – revealing 
previously unknown events

• Results verified by running 
MONSID in developer 
mode and as part of 
ASTERIA FSW on 
ASTERIA System Testbed 

• Shown here:  Detection 
and isolation of a (very) 
brief pointing knowledge 
inconsistency during slew

• Caused by momentary 
change in Star Tracker 
state providing an incorrect 
transient output (ignored 
by XACT algorithms, but 
still reported)

• Similar behavior has been 
seen on other missions

Model Testing:  Flight Data

Discrepancy in 

pointing estimates 

Detection of node 

inconsistency



• Shown here:  Detection 
and isolation of 
suspected reaction wheel 
saturation discovered in 
captured flight data

• Detected discrepancies 
include mismatch in 
actual torque, as 
estimated from torque 
command and wheel 
RPM

• Isolation step confirms 
that only one wheel 
(RW3) is involved, and no 
other hypothesis explains 
this observation

Model Testing:  Flight Data



• To enable safe fault 
detection testing on 
board, MONSID FSW 
was provisioned with a 
commandable fault 
injection capability

• This biases sensor data 
prior to analysis by 
MONSID

• Shown here:  Bias 
introduced in one IMU 
channel

• Because such a change 
should propagate 
throughout the system, 
this results in several 
discrepancies, as the 
model now predicts a 
different overall state

• This poses an interesting 
challenge for isolation

Model Testing:  Seeded Faults



• In this case, the IMU is 
flagged as the most 
probable source of the 
fault

• However, other 
components could, in 
theory, lead to this 
outcome

• MONSID also found 
the degenerate case 
where RWAs had all 
failed in a way that 
cancelled out other 
potential signals, or in 
a way that a torque rod 
problem could mask

• This is of low 
probability, but 
technically correct –
will be filtered out in 
updates to the 
MONSID engine

Model Testing:  Seeded Faults



• ASTERIA’s F Prime-based flight software enabled an effective method of MONSID execution 
inside the control loop
❖MONSID primarily consumes data from the Attitude Control Components (the XACT ACS manager), but 

may also access commands sent to ACS
❖ ”Splitter components” used to send data from sources to MONSID without interrupting existing dataflows
❖MONSID implemented in a fully flight-ready configuration, sending summary results through telemetry 

while saving detailed information to disk for verification purposes

• MONSID itself managed by a new F Prime component (the ACS Health component)
❖ Implemented a very simple behavior for MONSID, requiring only two commands (Start and Stop)
❖This approach can be retrofitted to many F Prime FSW deployments

Flight Software Integration
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• MONSID-FSW was also combined with two other reasoners (AutoNav and 
MEXEC) to demonstrate closed-loop ability to ensure activity completion
❖Combined demonstration would exceed computational limits of ASTERIA avionics

❖Tested instead on workstation testbed, leveraging MONSID fault injection capability

Closed-Loop Autonomy

The three notches are injected faults of the RW1 tachometer
Noise events on RW1 and RW3 are real…

MONSID Toolkit displaying detection and diagnosis result during first fault episode
Red box indicates the diagnosis (RW1 Tachometer)



• Spacecraft Behavior:
❖ (Re-)Discovered that spacecraft magnetic torque due to its quiescent 

dipole was much higher than expected
❖ Used the onboard magnetometer estimate instead of model predicts in 

the MONSID model, departing from the XACT control laws

• Testbed Idiosyncrasies:
❖ In verification testing, discovered a (harmless) difference in NaN

handling between software and avionics testbeds

• Performance Benchmarking:
❖ Verified that MONSID impact on system resources is modest – 160 kB 

code base, 1.2 MB increase in resident memory, and < 5% CPU in 
worst case testing

Other Findings



• While a mission-ending spacecraft anomaly prevented actual on-board testing, 
ASTERIA still provided an excellent maturation opportunity for model-based fault 
management

❖Enabled by access to mission resources, from controllers and subsystem experts to 
software and hardware testbeds, from established mission processes and norms to flight 
data on demand

• MONSID demonstrated accuracy and reliability on captured flight data

❖Focus on testing and test realism resulted in numerous discoveries, including spacecraft 
behaviors and unknown benign faults, latent defects in system testbeds, hidden 
vulnerabilities in technology

• Demonstrated a functioning flight software implementation, feasible within the 
requirements and resources of a typical flight project

❖Modular flight software architecture, provided by F Prime, proved sufficiently flexible to 
support model-based fault diagnosis, and simplified integration and test

❖This approach can be applied to many other missions using F Prime

• There are no remaining hurdles to implementing MBFM in flight 

Conclusions


